Pre-recorded Sessions: From 4 December 2020 | Live Sessions: 10 – 13 December 2020

4 – 13 December 2020

#SIGGRAPHAsia | #SIGGRAPHAsia2020

Technical Papers

  • Ultimate Supporter Ultimate Supporter
  • Ultimate Attendee Ultimate Attendee

Date/Time: 04 – 13 December 2020
All presentations are available in the virtual platform on-demand.


Lecturer(s):
Thomas Müller, NVIDIA, Germany
Fabrice Rousselle, NVIDIA, Switzerland
Alexander Keller, NVIDIA, Germany
Jan Novák, NVIDIA, Switzerland

Bio:

Description: We propose neural control variates (NCV) for unbiased variance reduction in parametric Monte Carlo integration. So far, the core challenge of applying the method of control variates has been finding a good approximation of the integrand that is cheap to integrate. We show that a set of neural networks can face that challenge: a normalizing flow that approximates the shape of the integrand and another neural network that infers the solution of the integral equation. We also propose to leverage a neural importance sampler to estimate the difference between the original integrand and the learned control variate. To optimize the resulting parametric estimator, we derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice. When applied to light transport simulation, neural control variates are capable of matching the state-of-the-art performance of other unbiased approaches, while providing means to develop more performant, practical solutions. Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.

 

Back